Thomas Edison Thomas Edison
تاریخ : چهار شنبه 11 آبان 1390
نویسنده : Oda Pardeks
Thomas Edison


Edison as he appears at the National Portrait Gallery in Washington, D.C.

"Genius is 1 percent inspiration, 99 percent perspiration."
Born Thomas Alva Edison
February 11, 1847(1847-02-11)
Milan, Ohio, United States
Died October 18, 1931(1931-10-18) (aged 84)
West Orange, New Jersey, USA
Occupation Inventor, scientist, businessman
Religion Deist
Spouse Mary Stilwell (m. 1871–1884) «start: (1871)–end+1: (1885)»"Marriage: Mary Stilwell to Thomas Edison" Location: (linkback://en.wikipedia.org/wiki/Thomas_Edison)
Mina Miller (m. 1886–1931) «start: (1886)–end+1: (1932)»"Marriage: Mina Miller to Thomas Edison" Location: (linkback://en.wikipedia.org/wiki/Thomas_Edison)
Children Marion Estelle Edison (1873–1965)
Thomas Alva Edison Jr. (1876–1935)
William Leslie Edison (1878–1937)
Madeleine Edison (1888–1979)
Charles Edison (1890–1969)
Theodore Miller Edison (1898–1992)
Parents Samuel Ogden Edison, Jr. (1804–1896)
Nancy Matthews Elliott (1810–1871)
Relatives Lewis Miller (father-in-law)
Signature
Edison as a boy
Birthplace of Thomas Edison in Milan, Ohio
File:Edison April 7, 2008 02;41;46PM altered 2 PsCSJPEGo10.jpg
Historical marker of Edison's birthplace

Thomas Alva Edison (February 11, 1847 – October 18, 1931) was an American inventor and businessman. He developed many devices that greatly influenced life around the world, including the phonograph, the motion picture camera, and a long-lasting, practical electric light bulb. In addition, he created the world’s first industrial research laboratory. Dubbed "The Wizard of Menlo Park" (now Edison, New Jersey) by a newspaper reporter, he was one of the first inventors to apply the principles of mass production and large teamwork to the process of invention, and therefore is often credited with the creation of the first industrial research laboratory.[1]

Edison is the fourth most prolific inventor in history, holding 1,093 US patents in his name, as well as many patents in the United Kingdom, France, and Germany. He is credited with numerous inventions that contributed to mass communication and, in particular, telecommunications. These included a stock ticker, a mechanical vote recorder, a battery for an electric car, electrical power, recorded music and motion pictures. His advanced work in these fields was an outgrowth of his early career as a telegraph operator. Edison originated the concept and implementation of electric-power generation and distribution to homes, businesses, and factories – a crucial development in the modern industrialized world. His first power station was on Manhattan Island, New York.

Contents

 [hide

Early life

Thomas Edison was born in Milan, Ohio, and grew up in Port Huron, Michigan. He was the seventh and last child of Samuel Ogden Edison, Jr. (1804–96, born in Marshalltown, Nova Scotia, Canada) and Nancy Matthews Elliott (1810–1871, born in Chenango County, New York).[2][citation needed] His father had to escape from Canada because he took part in the unsuccessful Mackenzie Rebellion of 1837.[citation needed] Edison considered himself to be of Dutch ancestry.[3]

In school, the young Edison's mind often wandered, and his teacher, the Reverend Engle, was overheard calling him "addled". This ended Edison's three months of official schooling. Edison recalled later, "My mother was the making of me. She was so true, so sure of me; and I felt I had something to live for, someone I must not disappoint." His mother homeschooled him.[4] Much of his education came from reading R.G. Parker's School of Natural Philosophy and The Cooper Union.

Edison developed hearing problems at an early age. The cause of his deafness has been attributed to a bout of scarlet fever during childhood and recurring untreated middle-ear infections. Around the middle of his career Edison attributed the hearing impairment to being struck on the ears by a train conductor when his chemical laboratory in a boxcar caught fire and he was thrown off the train in Smiths Creek, Michigan, along with his apparatus and chemicals. In his later years he modified the story to say the injury occurred when the conductor, in helping him onto a moving train, lifted him by the ears.[5][6]

Edison's family was forced to move to Port Huron, Michigan, when the railroad bypassed Milan in 1854,[7] but his life there was bittersweet. He sold candy and newspapers on trains running from Port Huron to Detroit, and he sold vegetables to supplement his income. This began Edison's long streak of entrepreneurial ventures as he discovered his talents as a businessman. These talents eventually led him to found 14 companies, including General Electric, which is still in existence as one of the largest publicly traded companies in the world.[8][9]

Telegrapher

Edison became a telegraph operator after he saved three-year-old Jimmie MacKenzie from being struck by a runaway train. Jimmie's father, station agent J.U. MacKenzie of Mount Clemens, Michigan, was so grateful that he trained Edison as a telegraph operator. Edison's first telegraphy job away from Port Huron was at Stratford Junction, Ontario, on the Grand Trunk Railway.[10] In 1866, at the age of 19, Thomas Edison moved to Louisville, Kentucky, where, as an employee of Western Union, he worked the Associated Press bureau news wire. Edison requested the night shift, which allowed him plenty of time to spend at his two favorite pastimes—reading and experimenting. Eventually, the latter pre-occupation cost him his job. One night in 1867, he was working with a lead-acid battery when he spilled sulfuric acid onto the floor. It ran between the floorboards and onto his boss's desk below. The next morning Edison was fired.[11]

One of his mentors during those early years was a fellow telegrapher and inventor named Franklin Leonard Pope, who allowed the impoverished youth to live and work in the basement of his Elizabeth, New Jersey home. Some of Edison's earliest inventions were related to telegraphy, including a stock ticker. His first patent was for the electric vote recorder, (U.S. Patent 90,646),[12] which was granted on June 1, 1869.[13]

Marriages and children

Mina Edison in 1906

On December 25, 1871, Edison married 16-year-old Mary Stilwell, whom he had met two months earlier as she was an employee at one of his shops. They had three children:

  • Marion Estelle Edison (1873–1965), nicknamed "Dot"[14]
  • Thomas Alva Edison, Jr. (1876–1935), nicknamed "Dash"[15]
  • William Leslie Edison (1878–1937) Inventor, graduate of the Sheffield Scientific School at Yale, 1900.[16]

Mary Edison died on August 9, 1884, possibly from a brain tumor.[17]

On February 24, 1886, at the age of thirty nine, Edison married 20-year-old Mina Miller in Akron, Ohio.[18] She was the daughter of inventor Lewis Miller, co-founder of the Chautauqua Institution and a benefactor of Methodist charities. They also had three children:

Mina outlived Thomas Edison, dying on August 24, 1947.[22][23]

Beginning his career

Photograph of Edison with his phonograph, taken by Mathew Brady in 1877

Thomas Edison began his career as an inventor in Newark, New Jersey, with the automatic repeater and his other improved telegraphic devices, but the invention which first gained him notice was the phonograph in 1877. This accomplishment was so unexpected by the public at large as to appear almost magical. Edison became known as "The Wizard of Menlo Park," New Jersey. His first phonograph recorded on tinfoil around a grooved cylinder, but had poor sound quality and the recordings could only be played a few times. In the 1880s, a redesigned model using wax-coated cardboard cylinders was produced by Alexander Graham Bell, Chichester Bell, and Charles Tainter. This was one reason that Thomas Edison continued work on his own "Perfected Phonograph."

Menlo Park (1876–1881)

Edison's major innovation was the first industrial research lab, which was built in Menlo Park, New Jersey. It was built with the funds from the sale of Edison's quadruplex telegraph. After his demonstration of the telegraph, Edison was not sure that his original plan to sell it for $4,000 to $5,000 was right, so he asked Western Union to make a bid. He was surprised to hear them offer $10,000,[citation needed] which he gratefully accepted. The quadruplex telegraph was Edison's first big financial success, and Menlo Park became the first institution set up with the specific purpose of producing constant technological innovation and improvement. Edison was legally attributed with most of the inventions produced there, though many employees carried out research and development under his direction. His staff was generally told to carry out his directions in conducting research, and he drove them hard to produce results.

Edison's Menlo Park Laboratory, removed to Greenfield Village at Henry Ford Museum in Dearborn, Michigan. (Note the organ against the back wall)

William J. Hammer, a consulting electrical engineer, began his duties as a laboratory assistant to Edison in December 1879. He assisted in experiments on the telephone, phonograph, electric railway, iron ore separator, electric lighting, and other developing inventions. However, Hammer worked primarily on the incandescent electric lamp and was put in charge of tests and records on that device. In 1880, he was appointed chief engineer of the Edison Lamp Works. In his first year, the plant under General Manager Francis Robbins Upton turned out 50,000 lamps. According to Edison, Hammer was "a pioneer of incandescent electric lighting".

Thomas Edison's first successful light bulb model, used in public demonstration at Menlo Park, December 1879

Nearly all of Edison's patents were utility patents, which were protected for a 17-year period and included inventions or processes that are electrical, mechanical, or chemical in nature. About a dozen were design patents, which protect an ornamental design for up to a 14-year period. As in most patents, the inventions he described were improvements over prior art. The phonograph patent, in contrast, was unprecedented as describing the first device to record and reproduce sounds.[24] Edison did not invent the first electric light bulb, but instead invented the first commercially practical incandescent light.[citation needed] Many earlier inventors had previously devised incandescent lamps including Henry Woodward, and Mathew Evans. Others who developed early and not commercially practical incandescent electric lamps included Humphry Davy, James Bowman Lindsay, Moses G. Farmer,[25] William E. Sawyer, Joseph Swan and Heinrich Göbel. Some of these early bulbs had such flaws as an extremely short life, high expense to produce, and high electric current drawn, making them difficult to apply on a large scale commercially. In 1878, Edison applied the term filament to the element of glowing wire carrying the current, although the English inventor Joseph Swan had used the term prior to this. Swan developed an incandescent light with a long lasting filament at about the same time as Edison, as Swan's earlier bulbs lacked the high resistance needed to be an effective part of an electrical utility. Edison and his co-workers set about the task of creating longer-lasting bulbs. In Britain, Joseph Swan had been able to obtain a patent on the incandescent lamp because although he had been making successful lamps some time before Edison was tardy in applying for patents so application was submitted by Edison but failed due to an oversight in the drafting of Edison's patent application.[26] Unable to raise the required capital in Britain because of this, Edison was forced to enter into a joint venture with Swan (known as Ediswan). Swan acknowledged that Edison had anticipated him, saying "Edison is entitled to more than I ... he has seen further into this subject, vastly than I, and foreseen and provided for details that I did not comprehend until I saw his system".[27] By 1879, Edison had produced a new concept: a high resistance lamp in a very high vacuum, which would burn for hundreds of hours. While the earlier inventors had produced electric lighting in laboratory conditions, dating back to a demonstration of a glowing wire by Alessandro Volta in 1800, Edison concentrated on commercial application, and was able to sell the concept to homes and businesses by mass-producing relatively long-lasting light bulbs and creating a complete system for the generation and distribution of electricity.

In just over a decade Edison's Menlo Park laboratory had expanded to occupy two city blocks. Edison said he wanted the lab to have "a stock of almost every conceivable material". A newspaper article printed in 1887 reveals the seriousness of his claim, stating the lab contained "eight thousand kinds of chemicals, every kind of screw made, every size of needle, every kind of cord or wire, hair of humans, horses, hogs, cows, rabbits, goats, minx, camels ... silk in every texture, cocoons, various kinds of hoofs, shark's teeth, deer horns, tortoise shell ... cork, resin, varnish and oil, ostrich feathers, a peacock's tail, jet, amber, rubber, all ores ..." and the list goes on.[28]

Over his desk, Edison displayed a placard with Sir Joshua Reynolds' famous quotation: "There is no expedient to which a man will not resort to avoid the real labor of thinking."[29] This slogan was reputedly posted at several other locations throughout the facility.

With Menlo Park, Edison had created the first industrial laboratory concerned with creating knowledge and then controlling its application.

Carbon telephone transmitter

In 1877–78, Edison invented and developed the carbon microphone used in all telephones along with the Bell receiver until the 1980s. After protracted patent litigation, in 1892 a federal court ruled that Edison—and not Emile Berliner—was the inventor of the carbon microphone. The carbon microphone was also used in radio broadcasting and public address work through the 1920s.

Electric light

Edison in 1878

Building on the contributions of other developers over the previous three quarters of a century, Edison made significant improvements to the idea of incandescent light, and wound up in the public consciousness as "the inventor" of the lightbulb, and a prime mover in developing the necessary infrastructure for electric power.

After many experiments with platinum and other metal filaments, Edison returned to a carbon filament. The first successful test was on October 22, 1879;[30] it lasted 40 hours. Edison continued to improve this design and by November 4, 1879, filed for U.S. patent 223,898 (granted on January 27, 1880) for an electric lamp using "a carbon filament or strip coiled and connected to platina contact wires".[31] Although the patent described several ways of creating the carbon filament including "cotton and linen thread, wood splints, papers coiled in various ways",[31] it was not until several months after the patent was granted that Edison and his team discovered a carbonized bamboo filament that could last over 1,200 hours. The idea of using this particular raw material originated from Edison's recalling his examination of a few threads from a bamboo fishing pole while relaxing on the shore of Battle Lake in the present-day state of Wyoming, where he and other members of a scientific team had traveled so that they could clearly observe a total eclipse of the sun on July 29, 1878, from the Continental Divide.[32]

U.S. Patent#223898: Electric-Lamp. Issued January 27, 1880.

In 1878, Edison formed the Edison Electric Light Company in New York City with several financiers, including J. P. Morgan and the members of the Vanderbilt family. Edison made the first public demonstration of his incandescent light bulb on December 31, 1879, in Menlo Park. It was during this time that he said: "We will make electricity so cheap that only the rich will burn candles."[33]

Lewis Latimer joined the Edison Electric Light Company in 1884. Latimer had received a patent in January 1881 for the "Process of Manufacturing Carbons", an improved method for the production of carbon filaments for lightbulbs. Latimer worked as an engineer, a draftsman and an expert witness in patent litigation on electric lights.[34]

George Westinghouse's company bought Philip Diehl's competing induction lamp patent rights (1882) for $25,000, forcing the holders of the Edison patent to charge a more reasonable rate for the use of the Edison patent rights and lowering the price of the electric lamp.[35]

On October 8, 1883, the US patent office ruled that Edison's patent was based on the work of William Sawyer and was therefore invalid. Litigation continued for nearly six years, until October 6, 1889, when a judge ruled that Edison's electric light improvement claim for "a filament of carbon of high resistance" was valid. To avoid a possible court battle with Joseph Swan, whose British patent had been awarded a year before Edison's, he and Swan formed a joint company called Ediswan to manufacture and market the invention in Britain.

Mahen Theatre in Brno (in what is now the Czech Republic) was the first public building in the world to use Edison's electric lamps, with the installation supervised by Edison's assistant in the invention of the lamp, Francis Jehl.[36] In September 2010, a sculpture of three giant light bulbs was erected in Brno, in front of the theatre.[37]

Electric power distribution

Edison patented a system for electricity distribution in 1880, which was essential to capitalize on the invention of the electric lamp. On December 17, 1880, Edison founded the Edison Illuminating Company. The company established the first investor-owned electric utility in 1882 on Pearl Street Station, New York City. It was on September 4, 1882, that Edison switched on his Pearl Street generating station's electrical power distribution system, which provided 110 volts direct current (DC) to 59 customers in lower Manhattan.[38]

Earlier in the year, in January 1882 he had switched on the first steam generating power station at Holborn Viaduct in London. The DC supply system provided electricity supplies to street lamps and several private dwellings within a short distance of the station. On January 19, 1883, the first standardized incandescent electric lighting system employing overhead wires began service in Roselle, New Jersey.

War of currents

Extravagant displays of electric lights quickly became a feature of public events, as in this picture from the 1897 Tennessee Centennial Exposition.

Edison's true success, like that of his friend Henry Ford, was in his ability to maximize profits through establishment of mass-production systems and intellectual property rights. George Westinghouse and Edison became adversaries because of Edison's promotion of direct current (DC) for electric power distribution instead of the more easily transmitted alternating current (AC) system invented by Nikola Tesla and promoted by Westinghouse. Unlike DC, AC could be stepped up to very high voltages with transformers, sent over thinner and cheaper wires, and stepped down again at the destination for distribution to users.

In 1887 there were 121 Edison power stations in the United States delivering DC electricity to customers. When the limitations of DC were discussed by the public, Edison launched a propaganda campaign to convince people that AC was far too dangerous to use. The problem with DC was that the power plants could economically deliver DC electricity only to customers within about one and a half miles (about 2.4 km) from the generating station, so that it was suitable only for central business districts. When George Westinghouse suggested using high-voltage AC instead, as it could carry electricity hundreds of miles with marginal loss of power, Edison waged a "War of Currents" to prevent AC from being adopted.

The war against AC led him to become involved in the development and promotion of the electric chair (using AC) as an attempt to portray AC to have greater lethal potential than DC. Edison went on to carry out a brief but intense campaign to ban the use of AC or to limit the allowable voltage for safety purposes. As part of this campaign, Edison's employees publicly electrocuted animals to demonstrate the dangers of AC;[39][40] alternating electric currents are slightly more dangerous in that frequencies near 60 Hz have a markedly greater potential for inducing fatal "cardiac fibrillation" than do direct currents.[41] On one of the more notable occasions, in 1903, Edison's workers electrocuted Topsy the elephant at Luna Park, near Coney Island, after she had killed several men and her owners wanted her put to death.[42] His company filmed the electrocution.

AC replaced DC in most instances of generation and power distribution, enormously extending the range and improving the efficiency of power distribution. Though widespread use of DC ultimately lost favor for distribution, it exists today primarily in long-distance high-voltage direct current (HVDC) transmission systems. Low voltage DC distribution continued to be used in high-density downtown areas for many years but was eventually replaced by AC low-voltage network distribution in many of them. DC had the advantage that large battery banks could maintain continuous power through brief interruptions of the electric supply from generators and the transmission system. Utilities such as Commonwealth Edison in Chicago had rotary converters or motor-generator sets, which could change DC to AC and AC to various frequencies in the early to mid-20th century. Utilities supplied rectifiers to convert the low voltage AC to DC for such DC loads as elevators, fans and pumps. There were still 1,600 DC customers in downtown New York City as of 2005, and service was finally discontinued only on November 14, 2007.[43] Most subway systems are still powered by direct current.

Fluoroscopy

Edison is credited with designing and producing the first commercially available fluoroscope, a machine that uses X-rays to take radiographs. Until Edison discovered that calcium tungstate fluoroscopy screens produced brighter images than the barium platinocyanide screens originally used by Wilhelm Röntgen, the technology was capable of producing only very faint images. The fundamental design of Edison's fluoroscope is still in use today, despite the fact that Edison himself abandoned the project after nearly losing his own eyesight and seriously injuring his assistant, Clarence Dally. Dally had made himself an enthusiastic human guinea pig for the fluoroscopy project and in the process been exposed to a poisonous dose of radiation. He later died of injuries related to the exposure. In 1903, a shaken Edison said "Don't talk to me about X-rays, I am afraid of them."[44]

Work relations

Photograph of Thomas Edison by Victor Daireaux, Paris, circa 1880s

Frank J. Sprague, a competent mathematician and former naval officer, was recruited by Edward H. Johnson and joined the Edison organization in 1883. One of Sprague's significant contributions to the Edison Laboratory at Menlo Park was to expand Edison's mathematical methods. Despite the common belief that Edison did not use mathematics, analysis of his notebooks reveal that he was an astute user of mathematical analysis conducted by his assistants such as

|
امتیاز مطلب : 13
|
تعداد امتیازدهندگان : 3
|
مجموع امتیاز : 3
موضوعات مرتبط: , ,
مطالب مرتبط با این پست
می توانید دیدگاه خود را بنویسید


نام
آدرس ایمیل
وب سایت/بلاگ
:) :( ;) :D
;)) :X :? :P
:* =(( :O };-
:B /:) =DD :S
-) :-(( :-| :-))
نظر خصوصی

 کد را وارد نمایید:

آپلود عکس دلخواه:








آخرین مطالب

/
به وبلاگ من خوش آمدید